Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt B): 116480, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306626

RESUMO

Biological invasions produce negative impacts worldwide, causing massive economic costs and ecological impacts. Knowing the relationship between invasive species abundance and the magnitude of their impacts (abundance-impact curves) is critical to designing prevention and management strategies that effectively tackle these impacts. However, different measures of abundance may produce different abundance-impact curves. Woody plants are among the most transformative invaders, especially in grassland ecosystems because of the introduction of hitherto absent life forms. In this study, our first goal was to assess the impact of a woody invader, Pinus contorta (hereafter pine), on native grassland productivity and livestock grazing in Patagonia (Argentina), building abundance-impact curves. Our second goal, was to compare different measure of pine abundance (density, basal area and canopy cover) as predictors of pine's impact on grassland productivity. Our third goal, was to compare abundance-impact curves among the mentioned measures of pine abundance and among different measures of impact: total grassland productivity, palatable productivity and sheep stocking rate (the number of sheep that the grassland can sustainably support). Pine canopy cover, closely followed by basal area, was the measure of abundance that best explained the impact on grassland productivity, but the shape of abundance impact curves differed between measures of abundance. While increases in pine density and basal area always reduced grassland productivity, pine canopy cover below 30% slightly increased grassland productivity and higher values caused an exponential decline. This increase in grassland productivity with low levels of pine canopy cover could be explained by the amelioration of stressful abiotic conditions for grassland species. Different measures of impact, namely total productivity, palatable productivity and sheep stocking rate, drew very similar results. Our abundance-impact curves are key to guide the management of invasive pines because a proper assessment of how many invasive individuals (per surface unit) are unacceptable, according to environmental or economic impact thresholds, is fundamental to define when to start management actions.


Assuntos
Pinus , Árvores , Ovinos , Animais , Pradaria , Ecossistema , Espécies Introduzidas , Gado
2.
Environ Manage ; 69(1): 140-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586487

RESUMO

Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS. We follow five good-practice criteria: justified, evidence-informed, actionable, quantifiable, and flexible. We used expert knowledge methods to compile 17 lists of ecological, social, and economic impacts of lodgepole pines (Pinus contorta) and American mink (Neovison vison) in Chile and Argentina, the privet (Ligustrum lucidum) in Argentina, the yellow-jacket wasp (Vespula germanica) in Chile, and grasses (Urochloa brizantha and Urochloa decumbens) in Brazil. INNS plants caused a greater number of impacts than INNS animals, although more socio-economic impacts were listed for INNS animals than for plants. These impacts were ranked according to their magnitude and level of confidence on the information used for the ranking to prioritise impacts and assign them one of four high-level actions-do nothing, monitor, research, and immediate active management. We showed that it is possible to formulate management priorities, targets, and high-level actions for a variety of INNS and with variable levels of available information. This is vital in a world where the problems caused by INNS continue to increase, and there is a parallel growth in the implementation of management plans to deal with them.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Animais , Argentina , Brasil , Chile , Plantas
3.
Ecol Evol ; 9(13): 7562-7573, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346422

RESUMO

AIM: Tree invasions are a threat to biodiversity conservation, and although it is hard to predict the future spread of invasive tree species, there are tools available which could allow some estimations. The magnitude of spatial spread (a proxy of invasiveness) can be predicted from species climatic requirement (climatic niche) and can be represented by species distribution models (SDMs). We aimed to assess whether Acacia dealbata conserves its niche in the new environment of south-central Chile, and also, to estimate the invasive stage of the species. LOCATION: South-central area of Chile, between the O'Higgins (34°0″0'S) and Aysen Regions (47°0″0'S). METHODS: We used a combination of global, native, and regional data to improve the estimation of the potential distribution of A. dealbata, which has been considered one of the most invasive species of the genus, being registered in at least 34 countries in all the Continents. RESULTS: Our results show that A. dealbata does not conserve its niche in the study area, invading areas with climatic conditions different from those of the native range. It is also not at equilibrium with the environment. According to the global versus regional SDM comparisons, populations present in south-central Chile present different invasion stages. There are some stable populations, but there are other populations colonizing new areas, occupying unsuitable habitats and some of them are adapting to new climatic conditions. Climatic factors, such as precipitation seasonality, could be acting behind the expansion to new environments, and biotic factors or dispersal limitations could be preventing the species to colonize suitable areas. MAIN CONCLUSIONS: The invasion process of A. dealbata is far from stabilizing, and management options should focus on prevention, avoiding, for example, the introduction of the species to Patagonia where the species has not spread yet. More research is needed to complement our results and enhance the development of effective management strategies.

4.
Ecol Evol ; 6(2): 447-59, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26843929

RESUMO

Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...